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Abstract—Cross-modal retrieval aims to retrieve relevant
data from another modality when given a query of one
modality. Although most existing methods that rely on the
label information of multimedia data have achieved promising
results, the performance benefiting from labeled data comes
at a high cost since labeling data often requires enormous
labor resources, especially on large-scale multimedia datasets.
Therefore, unsupervised cross-modal learning is of crucial
importance in real-world applications. In this paper, we
propose a novel unsupervised cross-modal retrieval method,
named Self-supervised Correlation Learning (SCL), which takes
full advantage of large amounts of unlabeled data to learn
discriminative and modality-invariant representations. Since
unsupervised learning lacks the supervision of category labels, we
incorporate the knowledge from the input as a supervisory signal
by maximizing the mutual information between the input and the
output of different modality-specific projectors. Besides, for the
purpose of learning discriminative representations, we exploit
unsupervised contrastive learning to model the relationship
among intra- and inter-modality instances, which makes similar
samples closer and pushes dissimilar samples apart. Moreover,
to further eliminate the modality gap, we use a weight-sharing
scheme and minimize the modality-invariant loss in the joint
representation space. Beyond that, we also extend the proposed
method to the semi-supervised setting. Extensive experiments
conducted on three widely-used benchmark datasets demonstrate
that our method achieves competitive results compared with
current state-of-the-art cross-modal retrieval approaches.

Index Terms—Cross-Modal Retrieval; Self-supervised Con-
trastive Learning; Mutual Information Estimation

I. INTRODUCTION

THE explosive growth of multimedia data on various
platforms and increasing demands for multimedia

applications have attracted a surge of research interest in
multimodal learning, including multimodal representation,
translation, alignment, and fusion [1]. Over the past decades,
cross-modal retrieval has been a popular research topic that
can retrieve the relevant samples with the same semantic
category from one modality when given a query of another
modality. Although supervised cross-modal methods have
made significant progress, they suffer from poor performance
in the cases of label deficiency. In practical application
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scenarios, it is often difficult to label large-scale datasets,
thus limiting the performance of these methods. On the
current multimedia platform, paired multimedia data is readily
accessible; therefore, exploiting the abundant unlabeled data
is promising in broader applications. Towards this end, to
alleviate the reliance on labeled data, this paper investigates the
unsupervised representation learning for cross-modal retrieval
to learn valid and discriminative representations from a large
amount of unlabeled data.

Because of diverse distributions and feature representations
in different modalities, the critical challenge for cross-
modal tasks lies in how to bridge the heterogeneity gap.
Currently, the mainstream cross-modal retrieval methods focus
on common space learning [2]. They follow the idea that
multimodal data sharing the same semantics have latent
correlations, which makes it possible to construct a common
space [3]. By mapping features of different modalities into
a common space, it becomes much easier to measure
distances among features of different modalities directly.
Several pioneer efforts have been dedicated to exploring
the unsupervised learning paradigms [4], [5], [6], [7], [8],
[9], including traditional approaches, and deep learning
based approaches. For instance, one typical kind of methods
endeavors to learn multiple modality-specific transformations
by maximizing the correlations between different modalities,
such as Canonical Correlation Analysis (CCA) [4], Kernel
Canonical Correlation Analysis (KCCA) [10], and Deep
Canonical Correlation Analysis (DCCA) [7]. They evolve
from a traditional linear model to a nonlinear model with
the kernel trick and then to the model based on Deep
Neural Networks (DNN). Although DNN-based methods can
overcome the shortcomings of traditional methods, they still
possess the following three disadvantages: 1) The media
gap among different modalities still exists, which degrades
the performance for cross-modal retrieval. 2) Due to the
lack of supervision signal except for label information, they
are incapable of learning high-level semantic features for
multimedia data. Furthermore, 3) they do not fully harness the
intra- and inter-modality correlations. As a result, the learned
representations are not discriminative enough. To address the
above issues, we propose a new unsupervised cross-modal
method, called self-supervised correlation learning, which also
follows the paradigm of latent common space learning. Firstly,
in order to bridge the media gap, we use a weight-sharing
scheme and minimize the modality-invariant loss in the joint
representation space. In addition, we design a cross-modal
mutual information loss, which provides a supervisory signal
for semantic feature learning and reduces the media gap by
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Fig. 1: Definition of unsupervised learning, semi-supervised learning, and supervised learning. An image-text pair is regarded
as an instance. All unlabeled data are used for unsupervised learning, a small proportion of labeled data and a large amount
of unlabeled data are used for semi-supervised learning (1/3 labels used in the figure) while all labeled data are exploited for
supervised learning.

maximizing the cross-modal mutual information between the
input and the output of different projectors. Furthermore, for
the purpose of learning more discriminative representations,
we resort to unsupervised contrastive learning to model
the relationship among intra- and inter-modality instances.
Extensive experiments conducted on three benchmark datasets
have demonstrated that our method can significantly improve
the performance towards unsupervised cross-modal retrieval.

The main contributions of this paper are summarized as
follows:

• We present a novel unsupervised cross-modal retrieval
method, named self-supervised correlation learning,
which exploits unsupervised contrastive learning to learn
more discriminative representations by modeling the
correlations among intra- and inter-modality instances.
Especially, it is unnecessary to adopt a complicated
sampling strategy. To the best of our knowledge, we are
the first to incorporate unsupervised contrastive learning
into cross-modal retrieval.

• We design a cross-modal mutual information loss
to preserve the cross-modal correlation structure by
maximizing the mutual information between the input and
the output of different transformations. Meanwhile, we
use a weight-sharing scheme and minimize the modality-
invariant loss to further eliminate the modality gap.

• Extensive experiments on three widely-used benchmark
datasets show that our proposed method achieves
competitive performance compared with several state-of-
the-art cross-modal retrieval approaches.

The organization of this article is as follows. In Section II,
we review the related work in cross-modal retrieval. In Section
III, we elaborate on our proposed method. In Section IV, we
describe the datasets, evaluation metrics, experiments results,
and ablation study. In Section V, we conclude this paper.

II. RELATED WORK

According to whether to exploit class labels, existing cross-
modal methods [11], [12], [13] can be divided into three

categories: unsupervised, semi-supervised, and supervised
algorithms. We will briefly introduce these related work in
this section. The definition of unsupervised learning, semi-
supervised learning, and supervised learning are displayed in
Figure 1.

A. Unsupervised Cross-Modal Methods

The goal of unsupervised cross-modal retrieval is to
retrieve relevant samples of one modality given a query of
another modality under the condition of no label information.
One of the traditional unsupervised methods is the well-
known CCA [4], [10], [6], which maximizes the cross-modal
correlations by learning two linear transformation functions.
Another classical method is Partial Least Square (PLS) [5],
[14], which is similar to CCA to maximize the covariance
of two modalities by two linear projections. Furthermore,
to model the relationship of multi-modal data, Multiset
CCA (MCCA) [6] learns a shared space by maximizing
correlations among all possible pairwise modalities. To
improve these linear methods, KCCA [10] applies the
kernel method to CCA, which maximizes the correlations in
Reproducing Kernel Hilbert Spaces (RKHS) by two nonlinear
transformations. However, the predefined kernel limits the
performance and is intractable to choose. Afterwards, with
the prosperity of deep neural networks, the shortcomings
of kernel trick can be tackled by projecting data into
a high-level common subspace. For example, DCCA [7],
[15] extends CCA to a deep cross-modal model, which
learns two complex nonlinear transformations to project two
modalities into a latent common subspace, where the resulting
representations are highly linearly correlated. Inspired by
both DCCA and autoencoder networks, Deep Canonically
Correlated Autoencoders (DCCAE) [9] improves DCCA by
adding an autoencoder regularization term. However, these
methods focus solely on the correlation between coupled
cross-modal items (e.g. an image and its corresponding text
descriptions) while ignoring the intra- and inter-modality
correlation. Recently, Zheng et al. [16] propose a dual-path
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CNN model with instance loss for visual-textual embedding
learning. Chen et al. [17] integrate the information theory and
adversarial learning to reduce the semantic gap. These methods
usually adopt triplet loss to associate the intra- and inter-
modality similarity, which require semi-hard negative mining
and neglect the semantic information in the original features.

B. Semi-supervised Cross-Modal Methods

Semi-supervised methods [18], [19], [20], [21], [22], [23],
[24] exploit a small proportion of labeled cross-modal data
and a large amount of unlabeled cross-modal data to learn
a latent discriminative common subspace for cross-modal
retrieval. Considering that previous methods usually focus on
modeling the pairwise correlation or semantic information
separately, Joint Representation Learning (JRL) [18] jointly
explores the correlation and semantic information in a unified
optimization framework, which uses the sparse and graph
regularization to extract useful clues in both labeled and
unlabeled data. However, it models different media types into
different graphs separately while neglecting the cross-media
correlations among various modalities. To make full use of
cross-media semantic relationship, Semi-Supervised Unified
Patch Graph (S2UPG) [19] regularizes the cross-media feature
learning by simultaneously modeling multimedia instances
and their patches in one joint graph. In addition, Generalized
Semi-supervised Structured Subspace Learning (GSS-SL) [21]
expoits a label graph as linkage to optimize multiple
transformations, making the graphs of different modalities
consistent with the same label graph. However, these methods
need to compute the graph matrix based on the whole
training dataset, which suffers from high computation and
space complexity, and thus is inapplicable for large-scale
datasets. To overcome this issue, Semi-supervised Multimodal
Learning Network (SMLN) [24] correlates different modalities
by constructing a similarity matrix based on labeled and
unlabeled multimedia data and designs a novel eigenvalue-
based loss function to exactly balance all eigenvalues, which
can be trained in a batch-by-batch manner and handle large-
scale databases.

C. Supervised Cross-Modal Methods

Supervised cross-modal methods exploit label information
to learn the common space, achieving considerable perfor-
mance in cross-modal retrieval. Over the past few years, a
great deal of supervised methods have sprung up [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35]. With the
guidance of semantic labels, they are able to learn a common
discriminative subspace, in which the intra-class variation
is minimized while the inter-class one is maximized. For
example, Adversarial Cross-Modal Retrieval (ACMR) [26]
seeks an effective common subspace based on adversarial
training by learning modality-invariant representations during
the minimax game. In specific, it imposes a triplet constraint
to minimize the gap of all items from different modalities
of the same class while maximizing the distances among
semantically different samples. Deep Supervised Cross-Modal
Retrieval (DSCMR) [30] minimizes the discrimination loss

in both the label space and the common representation
space to supervise the model learning discriminative features.
Scalable Deep Multimodal Learning (SDML) [31] predefines
a common subspace restricted to label space by a fixed
orthogonal matrix. In this way, it can train different modality-
specific networks independently and be scalable to the variable
number of modalities.

Although the existing supervised cross-modal methods have
achieved excellent performance, they highly depend on the
label information that requires much human labor. Compared
with supervised methods, unsupervised ones completely
exploit self-supervised information, which can learn more
general semantic features.

D. Contrastive Learning Methods

Contrastive learning is first proposed by Hadsell et al. [36]
for dimension reduction, which minimizes the distance
between similar pairs and enforces a margin between the
distance of dissimilar pairs. To better distinguish between
positive and negative samples, triplet loss [37] minimizes the
distance between an anchor and a positive point and maximizes
the distance between an anchor and a negative point. N -
pair loss [38] generalizes the triplet loss by comparing
more than one negative example. In recent years, self-
supervised learning has received widespread attention because
of its ability to learn effective representations from a large
amount of unlabeled data, and many studies [39] based
on contrastive learning have been produced. For example,
Wu et al. [40] propose to learn feature representations via
non-parametric instance discrimination, which uses noise-
contrastive estimation to approximate the similarity to all
instances and maintains a memory bank to store the feature
representations. Oord et al. [41] propose InfoNCE loss and
relates it to the maximization of mutual information between
latent representations. MoCo [42] and SimCLR [43] adapt
a dual-branch structure to maximize the agreement of two
augmentation views. For negative sampling, instead of a
memory bank, MoCo uses a momentum-updated encoder to
obtain negative samples, and SimCLR employs the samples in
the current batch with a large batch size.

III. PROPOSED METHOD

In this section, we detail our proposed framework as
shown in Figure 2. First of all, we present the problem
formulation and the modality-invariant loss in Section III-A.
Then, we introduce the intrinsic structure preservation module
and the contrastive discrimination function in Section III-B and
Section III-C, respectively. Afterwards, we optimize the whole
objective function as shown in Algorithm 1 in Section III-D. In
the end, we extend the proposed method to the semi-supervised
setting in Section III-E.

A. Problem Formulation

Without losing generality, we focus on cross-modal
representation learning for bimodal data, specially for images
and texts. Assuming that there is a cross-modal dataset,
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Fig. 2: The general framework of our proposed SCL. It consists of four modules: feature extraction, feature projection, intrinsic
structure preservation, and contrastive discriminative function. The intrinsic structure preservation module correlates the original
feature space and common representation space. And the contrastive discrimination function models the relationship among
intra- and inter-modality pairs in the common space.

represented as D = {Dtr,Dva,Dte}, where Dtr, Dva, and Dte
denote the training, validation, and testing sets, respectively.
Specifically, for the training set, Dtr = {Vtr, Ttr}, where
Vtr = {vi}ntri=1 and Ttr = {ti}ntri=1. vi ∈ Rdv is the image
feature vector and ti ∈ Rdt is the text feature vector. Here,
dv and dt are the dimensions of image and text features,
respectively. ntr is the number of image-text pairs in the
training set. Note that, because it is time-consuming and
labor-intensive to annotate the large-scale data in practice,
there are no labels in the training set. For the testing set,
Dte = {Vte, Tte,Yte}, where Yte = {yi}ntei=1 is provided for
evaluation metrics. yi ∈ Rc is the label of the ith sample,
where c is the class number of the dataset. For the single-label
data, yi is a one-hot vector, while for the multilabel data, yi
consists of more than one nonzero value. nte is the number
of image-text pairs in the testing set. The validation set is
denoted similarly to the testing set. Our goal is to retrieve the
corresponding samples with the same semantic category from
another modality when given a query from one modality.

It is well-known that the main challenge of cross-modal
retrieval is the media gap between different modalities. To
overcome it, we employ two modality-specific non-linear
transformations to project original features into a common
subspace, where we can measure the similarity between
features of different modalities as in single-modality scenarios.
We denote the projected representation as zv = fv(v; θv) and
zt = ft(t; θt) for image and text, respectively, where θv and
θt are respectively the trainable parameters of image projector
fv and text projector ft. zv and zt have the same dimension
as dz .

Following the assumption that multimedia data share
high-level semantic representations, to ensure that two

subnetworks learn a latent common representation, we enforce
them to share the weights of the last layers. Besides, a
modality-invariant loss is applied to maintain the pairwise
correlation in the common space. By this means, it not only
encodes the consistent information in the original features of
different modalities through two nonlinear projectors but also
reduces the scale of parameters of the network, subsequently
alleviating the training difficulty.

The modality-invariant loss is defined as:

LCM =
1

N
‖Zv −Zt‖2 , (1)

where Zv and Zt are the projected representations in a
minibatch, and each row of them denotes the common
representation of an image and a text, respectively.

B. Intrinsic Structure Preservation

As mentioned before, due to the lack of supervision of label
information, previous unsupervised methods are incapable of
learning high-level semantic features for cross-modal retrieval.
Thus, one of our challenges is to figure out how to introduce
a supervisory signal to guide the model to learn useful
representations. In fact, there is a large amount of semantic
information in the finely extracted features, which can be
regarded as the supervision information. Based on that,
we construct the intrinsic correlations between the original
features and the common representations by maximizing
the Mutual Information (MI) between the input and the
output of modality-specific projectors. In this way, the learned
representations in the common space are consistent with the
original features, which preserves the semantic structure of
cross-modal data.
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Our mutual information maximization framework is
presented in the upper right of Figure 2. Considering that
there exists the media gap between different modalities,
we expect to model the cross-modal correlation between
the original features and the common representations and
meanwhile bridge the heterogeneous gap. Therefore, in
addition to the intra-modal mutual information losses, we
design the cross-modal mutual information losses between two
modality-specific projectors, which simultaneously maximizes
the mutual information between the original image features
and the projected text representations, as well as between the
original text features and the projected image representations.

Following [44], [45], we train a discriminator Tω to
distinguish between samples coming from the joint PV Zt and
the product of marginals PV × PZt . Similarly, we train another
discriminator Tφ to distinguish between samples coming from
the joint PTZv and the product of marginals PT × PZv . If
samples are from the same instance, they are positive pairs,
otherwise, they are negative pairs. Referring to [41], we
employ the infoNCE [46] estimator as a lower-bound on MI
to maximize it.

The cross-modal mutual information losses are defined as
follows:

LvtMI = EPV Zt [Tθt,ω(v, zt)− log
∑

PV ×PZt

eTθt,ω(v,zt)], (2)

LtvMI = EPTZv [Tθv,φ(t, zv)− log
∑

PT×PZv

eTθv,φ(t,zv)], (3)

and the intra-modal mutual information losses are defined as
follows:

LvvMI = EPV Zv [Tθv,ω(v, zv)− log
∑

PV ×PZv

eTθv,ω(v,zv)], (4)

LttMI = EPTZt [Tθt,φ(t,zt)− log
∑

PT×PZt

eTθt,φ(t,zt)], (5)

where θv and θt are the parameters of image and text
projectors, respectively. Because the projector and mutual
information estimator require similar computations, we share
layers of these functions as [45], so that Tθt,ω = Dω ◦
g ◦ (v, ft(t)), Tθv,φ = Dφ ◦ g ◦ (t, fv(v)), Tθv,ω =
Dω ◦ g ◦ (v, fv(v)), and Tθt,φ = Dφ ◦ g ◦ (t, ft(t)), where g
is a combination function. In detail, we first feed the original
images or texts features into two fully connected layers, where
the number of units is 1024 and 512. Then, we concatenate
its output with the projector output. After that, we pass this
to three fully connected layers (1024 → 512 → 512 → 1)
to get the score of the discriminator. Each hidden layer is
followed by a ReLU activation. In addition, to simplify the
discriminator, we share layers of two discriminators with the
same computations.

Finally, we combine the mutual information loss as:

LMI = LvtMI + LtvMI + LvvMI + LttMI . (6)

Algorithm 1 The optimization procedure of our proposed SCL

Input: The training dataset of image feature
V = {v1,v2, . . . ,vntr} and text feature
T = {t1, t2, . . . , tntr}, the batch size N , the learning
rate η, the hyper-parameters α and β, and the temperature
parameter τ .

Output: The optimal weight paramters θi, θt, ω and φ.
1: while not converge do
2: Randomly select N samples of each modality to

contrust a minibatch.
3: Learn the latent representations zv , zt for the samples

in the minibatch by forward-propagation.
4: Compute the modality-invariant loss LCM according

to Eq. (1).
5: Compute the mutual information loss LMI according

to Eq. (6).
6: Compute the contrastive loss LCD according to

Eq. (7).
7: Compute the overall loss L according to Eq. (8) and

update parameters θv , θt, ω and φ by stochastic gradient
descent as follows:

θv ← θv − η ∂L∂θv ; θt ← θt − η ∂L∂θt ;
ω ← ω − η ∂LMI∂ω ; φ← φ− η ∂LMI∂φ .

8: end while

C. Contrastive Discrimination Function

As discussed above, most existing unsupervised methods
as [7], [15] only focus on the pairwise correlation whereas
neglecting the correlation of dissimilar samples, which
is insufficient to generate discriminative representations.
Currently, supervised methods [26], [27] have achieved
promising performance for cross-modal retrieval by utilizing
the semantic category labels in the following two aspects:
1) They employ the classification task to exploit the
semantic information in each modality for learning intra-
modal discriminative representations. And 2) they model
the correlations between similar and dissimilar instances in
different modalities, which minimizes the distance between
the image-text pairs with the same label and maximizes the
distance between pairs with different labels. However, the
performance conferred by the labeled data suffers from a
significant cost since labeling data often requires enormous
human labor resources.

To overcome these limitations, we propose to model
the intra- and inter-modality correlation in an unsupervised
contrastive learning framework [41], [40], [42], [43] and seek
a common subspace, where similar samples are closer and
dissimilar samples are far away. Different from previous work
of contrastive learning of visual representations, we introduce
an unsupervised contrastive learning paradigm in the field
of cross-modal retrieval. Significantly, it does not depend on
the category labels to guide the procedure of representation
learning, and no complicated sampling mechanism is required.

The idea behind contrastive learning is to learn a
discriminative function to distinguish samples from different
distributions, i.e., correctly select a positive sample x out of the
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set S = {x,y1,y2, . . . ,yk} that contains k negative samples.
In order to bridge the media gap and learn discriminative
representations, we narrow the distance between pairwise
instances and extend the distance between unpaired instances.
The sampling strategy of our defined contrastive loss is
described in the following. Firstly, we randomly select N
image-text pairs to construct a minibatch. Then, the contrastive
loss is computed across all the image-text pairs derived from
the minibatch, resulting in 2N data points. As demonstrated in
the bottom right of Figure 2, given a sample of an image as the
anchor, we view its corresponding pairwise text representation
as the positive sample. Moreover, instead of sampling negative
examples complicatedly, we regard the representations of the
other 2(N − 1) data points within a minibatch as the negative
samples similar to [47]. Similarly, given a text example as the
anchor, the positive and negative samples are defined in the
same way.

Finally, we integrate the contrastive loss on all positive
pairs in a minibatch as:

LCD = − 1

2N

2N∑
i=1

log
exp (cos(zia, zp)/τ)∑2(N−1)

j=1 exp (cos(zia, z
j
n)/τ)

, (7)

where za represents the anchor sample, zp indicates the
positive sample, and zn denotes one of the negative samples.
τ is an adjusted temperature parameter and cos(zi, zj) =
(zi · zj)/(‖zi‖2 · ‖zj‖2) is the cosine similarity between zi
and zj .

D. Optimization and Training Strategy

The overview framework for our SCL is shown in Figure
2. It is composed of four different modules, i.e., feature
extraction, feature projection, intrinsic structure preservation,
and contrastive discriminative function. The overall objective
of our method is as follows:

L = LCM + α · LMI + β · LCD, (8)

where LCM is the modality-invariant loss, LMI is the mutual
information loss for correlation structure preservation, and
LCD is the contrastive loss for contrastive discrimination
function. The above three losses are minimized simultaneously
to eliminate the media gap among different modalities and
learn discriminative representations in the common space.
α and β are the trade-off hyper-parameters for modality-
invariant loss, mutual information loss, and contrastive loss.
We summarize the proposed method in Algorithm 1.

E. Extension to the Semi-supervised Situation

To fully exploit the labeled and unlabeled data as
well as achieve a better trade-off between annotations and
performance, we extend our SCL to the semi-supervised
setting from two aspects: label prediction and class-aware
contrastive discrimination.

1) Label Prediction: In order to learn intra-modal
discriminative representations, a classifier is employed to
predict the semantic labels of items for each modality. Given
the joint embeddings zv and zt, the formulation of the
classification objective is as follows:

piv = softmax(W Tziv + b), (9)

pit = softmax(W Tzit + b), (10)

LC = − 1

N

N∑
i=1

(yi · (log piv + log pit)), (11)

where W and b are the weight and bias of the last fully
connected layer, respectively. Besides, pv and pt denote the
predicted probability of semantic categories of image and text
modalities.

2) Class-aware Contrastive Discrimination: Instead of
the instance-aware contrastive discrimination function, the
class-aware one takes the label information into account
and measures the intra- and inter-class discrepancies across
modalities. To be specific, the intra-class discrepancy is
minimized to compact the feature representations of samples
within a class, whereas the inter-class discrepancy is
maximized to push away the representations of samples from
different classes. Like Eq. (7), we formulate the class-aware
contrastive loss as follows:

LCCD = − 1

2N

2N∑
i=1

log

∑
j exp (cos(z

i
a, z

j
p)/τ)∑

k exp (cos(z
i
a, z

k
n)/τ)

, (12)

where za represents the anchor sample, zp and zn indicate one
of the positive samples and the negative samples, respectively.
Different from Section III-C, all instances in a minibatch with
the same class as anchor are treated as the positive samples
while the others are considered as the negative samples. τ is
an adjusted temperature parameter.

3) Objective Function: The loss function for our proposed
semi-supervised SCL consists of two terms, a supervised loss
LS and an unsupervised loss LU . Let us define X = {xi :
i ∈ (1, . . . , N)} as a batch of N labeled instances, where xi =
(vi, ti,yi) are image-text pairs with one-hot labels and let U =
{ui : i ∈ (1, . . . , N)} be a batch of N unlabeled examples,
where ui = (vi, ti) are image-text pairs without labels. For
labeled and unlabeled data, the supervised and unsupervised
losses are computed respectively as follows:

LS = LC(xi) + γ · LCCD(xi), (13)

LU = LCM (ui) + α · LMI(ui) + β · LCD(ui). (14)

The overall objective function is summarized as:

LSS = LS + λ · LU . (15)
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TABLE I: General statistics of the three datasets used in the
experiments, where “*/*/*” in the “Instances” column stands
for the number of training/validation/testing subsets.

Dataset Instances Labels Image feature Text feature

Wikipedia 2,173/231/462 10 4,096D VGG 5,000D BoW
NUS-WIDE-10K 8,000/1,000/1,000 10 4,096D VGG 1,000D BoW
MS-COCO 82,081/5,000/5,000 80 4,096D VGG 3,000D BoW

(a) Wikipedia

(b) NUS-WIDE-10K

(c) MS-COCO

Fig. 3: Examples of the image, text, and label (s) for the
Wikipedia dataset, the NUS-WIDE-10K dataset, and the MS-
COCO dataset.

IV. EXPERIMENTS

To verify the effectiveness of our model, we conducted
experiments on three widely-used cross-modal benchmark
datasets: the Wikipedia dataset [48], the NUS-WIDE-
10k dataset [49], and the MS-COCO dataset [50]. In
the experiments reported below, we first compared our
proposed method with several state-of-the-art methods. Then
we conducted additional evaluations to investigate the
effectiveness of each component of our method.

A. Experimental Setup

1) Datasets and Features: Three cross-modal datasets
are adopted in our experiments, including Wikipedia, NUS-
WIDE-10K, and MS-COCO. The statistics of three datasets
are summarized in Table I. Some samples of the image, text,
and label (s) for Wikipedia, NUS-WIDE-10K, and MS-COCO
are shown in Figure 3.

• The Wikipedia dataset [48] is the most widely-used
dataset for cross-modal retrieval. It contains 2,866 image-
text pairs with 10 semantic categories. Each pair has an
image and the corresponding text. Following [8], it is
split into three partitions: 2,173 pairs for training, 231
pairs for validation, and 462 pairs for testing.

• The NUS-WIDE-10K dataset is a subset of the NUS-
WIDE dataset [49] with 10,000 image-text pairs. Each
pair selected from one of the 10 largest categories
consists of an image and a unique tag as the class label.
Following [8], this dataset is divided into three subsets:
training set with 8,000 pairs, validation set with 1,000
pairs, and testing set with 1,000 pairs.

• The MS-COCO dataset [50] contains 123,287 images and
their annotated sentences with their labels categorized
into 80 classes. Note that each image usually contains
several objects. After pruning images without category
information, MS-COCO consists of 82,081 training
images and 40,173 validation images, each of which
is associated with five sentences. In our experiments,
we selected 82,081 pairs for training, 5,000 pairs for
validation, and 5,000 pairs for testing.

The image features in our experiments are extracted from
the fc7 layer of the 19-layer VGGNet pre-trained on ImageNet.
The text features are represented by a Bag of Words (BoW)
vector with the TF-IDF weighting scheme. The feature
dimensions of diverse datasets are presented in Table I.

2) Implementation Details: In this work, we employed two
fully-connected layers to project the original modality-specific
features into a common space. Each layer is followed by a
ReLU [51] activation. The numbers of the hidden units for
the two layers are 1,024 and 512. The input dimension is set
according to the feature size of specific modalities in different
datasets, e.g., 4,096 for image features and 5,000 for text
features in the Wikipedia dataset. Furthermore, we used the
l2-normalization after the last layer of each projector.

We set the learning rate to 0.0001 and trained the models for
200 epochs with the Adam [52] in all our experiments. After
fixing the value of batch size N at 256 and the temperature
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(a) Image2Text (b) Text2Image

Fig. 4: Precision-recall curves and precision-scope curves for the image-query-texts and text-query-images experiments on the
Wikipedia dataset.

parameter τ at 0.5, we tuned the parameters α and β on each
dataset using grid search. The analysis of α and β is shown in
Figure 5. Similarly, we experimented on parameter sensitivity
of N and τ when setting α and β to 0.01 and 1.0, respectively.
The retrieval performance is displayed in Figure 6.

The proposed method is trained on one Nvidia TITAN Xp
GPU in Pytorch. At inference time, we calculated the cosine
similarity among cross-modal samples directly in the common
space.

3) Evaluation Metric and Compared Methods: To evaluate
the performance of the methods, we performed cross-
modal retrieval tasks, i.e., retrieving one modality with
query of another modality, such as retrieving text by
image query (Image2Text) and retrieving image by text
query (Text2Image). The evaluation metric we adopted is the
mean Average Precision (mAP) calculated on all returned
results following [31], where cosine similarity is used to
measure the distances of representations. In addition, we also
plotted precision-recall curves and precision-scope curves for
additional comparisons.

To verify the effectiveness of our method, we compared
it with 13 state-of-the-art cross-modal retrieval methods
including four traditional cross-modal methods, namely
CCA [4], MCCA [6], KCCA [10], and PLS [5], and
nine DNN-based cross-modal methods, namely DCCA [7],
DCCAE [9], JRL [18], GSS-SL [21], ACMR [26],
DSCMR [30], SDML [31], Dual-Path [16] and SMLN [24].
Concretely, CCA, MCCA, KCCA, PLS, DCCA, DCCAE and
Dual-Path are unsupervised methods; ACMR, DSCMR, and
SDML are supervised methods; JRL, GSS-SL, and SMLN
are semi-supervised methods. For a fair comparison, all the
compared methods adopt the same image and text features as
our approach.

B. Comparison with the State-of-the-art Methods

In this section, we evaluated the effectiveness of our
proposed method by comparing with 13 state-of-the-art cross-
modal methods on two cross-modal retrieval tasks, i.e.,
Image2Text and Text2Image, on three cross-modal datasets,
i.e., Wikipedia, NUS-WIDE-10K, and MS-COCO under
unsupervised and semi-supervised settings.

1) Comparison Under Unsupervised Settings: We com-
pared the unsupervised and supervised methods under the
unsupervised settings, where only unlabeled data are used to
train the models. The average results are shown in Table II.

From this table, we can observe that our proposed method
achieves the best performance on all datasets compared to
traditional and DNN-based methods. As we can see from Table
II, our SCL outperforms the best competitor (i.e., Dual-Path)
by 2.9%, 0.6%, and 1.3% for image-query-texts, 2.6%, 0.7%,
and 1.4% for text-query-images, and 2.8%, 0.7%, and 1.4%
for average on three datasets, respectively. This shows the
effectiveness of modeling the correlations between pairwise
instances, and among intra- and inter-modality samples.

Furthermore, we can see that the performance of supervised
methods is even worse than most of unsupervised methods
under the circumstances where no label information is offered,
which proves that the supervised methods highly rely on the
labeled data while ignoring the correlation in a large amount
of unlabeled data.

In addition to the evaluation terms of the mAP score, we
also drew precision-recall curves and precision-scope curves
for additional comparisons. The precision-recall and precision-
scope curves of the image-query-texts and text-query-images
on the Wikipedia dataset are respectively plotted in Figure
4 (a) and Figure 4 (b). The scope (i.e., the top K retrieved
samples) of the precision-scope varies from K = 50 to 500.
As we can see from these curves, our SCL gets the best results
compared with the other 7 state-of-the-art unsupervised cross-
modal retrieval methods.

2) Comparison Under Semi-supervised Settings: In this
section, we compared our unsupervised and semi-supervised
SCL with the state-of-the-art supervised and semi-supervised
methods under semi-supervised settings of 5%, 10%, and 30%
labels, where the corresponding percentage of labeled data and
all the unlabeled data are used to train. The average results are
shown in Table III.

As illustrated in Table III, the supervised methods perform
terribly with very few labeled data, and the performance
gradually improves as the proportion of labeled data increases.
It indicates that models can learn high-level semantic features
from the labeled data with the supervision of label information.

In contrast, our SCLus exceeds existing supervised and
semi-supervised methods trained with 5% and 10% labeled
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TABLE II: Performance comparison in terms of mAP scores on Wikipedia, NUS-WIDE-10K and MS-COCO, where the
subscript “us”, and “s” denote “unsupervised” and “supervised”, respectively. And “-” means no repeated result available yet
due to high computation complexity and memory cost. The best results on each dataset are highlighted in bold and the second
best results are underlined.

Method
Wikipedia NUS-WIDE-10K MS-COCO

Image2Text Text2Image Average Image2Text Text2Image Average Image2Text Text2Image Average
CCAus [4] 0.214 0.176 0.195 0.352 0.346 0.349 0.509 0.507 0.508
MCCAus [6] 0.244 0.223 0.234 0.331 0.328 0.330 0.557 0.554 0.555
KCCAus [10] 0.270 0.295 0.283 0.424 0.334 0.379 - - -
PLSus [5] 0.335 0.302 0.318 0.444 0.424 0.434 0.634 0.632 0.633
DCCAus [7] 0.285 0.265 0.275 0.377 0.367 0.372 0.535 0.523 0.529
DCCAEus [9] 0.283 0.265 0.274 0.375 0.369 0.372 0.567 0.557 0.562
ACMRs [26] 0.167 0.155 0.161 0.305 0.329 0.317 0.347 0.425 0.386
DSCMRs [30] 0.125 0.126 0.125 0.311 0.302 0.306 0.355 0.387 0.371
SDMLs [31] 0.142 0.136 0.139 0.289 0.288 0.288 0.333 0.336 0.335
Dual-Pathus [16] 0.402 0.360 0.381 0.502 0.462 0.482 0.655 0.654 0.655
SCLus (ours) 0.431 0.386 0.409 0.508 0.469 0.489 0.668 0.668 0.668

TABLE III: Performance comparison under semi-supervised settings of 5%, 10%, and 30% labeled data on the Wikipedia
dataset, where the subscript “ss” and “s” denote “semi-supervised” and “supervised”, respectively. The best results are
highlighted in bold and the second best results are underlined.

Method
5% Labeled Data 10% Labeled Data 30% Labeled Data

Image2Text Text2Image Average Image2Text Text2Image Average Image2Text Text2Image Average
JRLss [18] 0.229 0.225 0.227 0.297 0.280 0.289 0.377 0.34 0.359
GSS-SLss [21] 0.258 0.244 0.251 0.307 0.274 0.291 0.345 0.306 0.326
ACMRs [26] 0.347 0.294 0.321 0.389 0.338 0.364 0.454 0.398 0.426
DSCMRs [30] 0.360 0.310 0.335 0.410 0.361 0.385 0.473 0.408 0.441
SDMLs [31] 0.370 0.314 0.342 0.409 0.362 0.386 0.480 0.416 0.448
SMLNss [24] 0.389 0.359 0.374 0.407 0.362 0.385 0.459 0.413 0.436
SCLus (ours) 0.431 0.386 0.409 0.431 0.386 0.409 0.431 0.386 0.409
SCLss (ours) 0.460 0.406 0.433 0.478 0.428 0.453 0.504 0.442 0.473

TABLE IV: Generalization on unseen NUS-WIDE-10K testing
set using different pre-trained models on MIRFlickr dataset,
where the subscript “us”, and “s” denote “unsupervised” and
“supervised”, respectively. The best results are highlighted in
bold and the second best results are underlined.

Method Image2Text Text2Image Average
CCAus [4] 0.247 0.241 0.244
MCCAus [6] 0.253 0.257 0.255
DCCAus [7] 0.232 0.238 0.235
DCCAEus [9] 0.227 0.233 0.230
PLSus [5] 0.350 0.361 0.356
ACMRs [26] 0.363 0.312 0.338
DSCMRs [30] 0.360 0.369 0.364
SDMLs [31] 0.369 0.374 0.372
Dual-Pathus [16] 0.394 0.407 0.401
SCLus (ours) 0.407 0.421 0.414

data. Meanwhile, our SCLss significantly outperforms its
competitors with different proportions (e.g., 5%, 10%, 30%)
of labeled data, which shows that our method can make
good use of the self-supervised information including the
correlation between single modality feature space and common
representation space as well as the contrastive discriminative
correlation in the unlabeled data, thereby alleviating the
dependence on the labeled data.

C. Generalization on Unseen Dataset

Since it is important for the model to generalize to out-of-
domain data, we further conducted experiments to evaluate the
generalization ability of our method. The evaluation settings
are as follows. We first pre-trained a model on one dataset
and then measured its performance on another dataset that is
unseen in the training. Specifically, we utilized the MIRFlickr
dataset [53] for training and tested models on the NUS-WIDE-
10K test split. The results are shown in Table IV. From this
table, we can see that our model is superior not only to existing
unsupervised methods but also to existing supervised methods.
This is because our model does not rely on the category label
and is better able to distinguish between similar and dissimilar
samples, thus being more generalized to unseen datasets.

D. Ablation Study

In this section, we performed the ablation study to
investigate the effectiveness of each component of our method,
including modality-invariant loss, contrastive discriminative
loss, cross-modal mutual information loss, and weight-sharing
scheme with the following four different variants.

• SCL-1 is a variant of our proposed SCL, which only
uses Weight-Sharing (WS) strategy and minimizes the
modality-invariant loss on paired instances.
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(a) Wikipedia (Image2Text) (b) Wikipedia (Text2Image) (c) Wikipedia (Average)

(d) NUS-WIDE-10K (Image2Text) (e) NUS-WIDE-10K (Text2Image) (f) NUS-WIDE-10K (Average)

Fig. 5: Retrieval performance of SCL with different values of trade-off parameters α and β on Wikipedia and NUS-WIDE-10K.

• SCL-2 is a variant of our SCL without cross-modal
mutual information loss.

• SCL-3 is a variant without the contrastive discrimination
function.

• SCL-4 is a variant that simultaneously optimizes LCM ,
LMI , and LCD but without the weight-sharing scheme.

For a fair comparison, all variants employ the same
basic network and parameter settings as our method. The
performance comparison of our proposed SCL and its variants
on the MS-COCO dataset is shown in Table V. The difference
between SCL-1 and SCL-2 is whether to use the contrastive
discrimination loss. We can see that SCL-2 significantly
surpasses the SCL-1, which indicates the effectiveness of
modeling the correlation among intra- and inter-modality
samples. SCL-3 adds the cross-modal mutual information loss
on the basis of SCL-1, which achieves better performance than
SCL-1 by maximizing the mutual information between the
input and the output of different modality-specific projectors.
Under the constraint of this self-supervised information, the
network is prevented from learning arbitrary representations.
Next, comparing SCL-4 with our full SCL, the performance
decreases by 1.7%, which explains the effectiveness of sharing
the weights of two subnetworks. In the end, compared to
the other variants, we observed that our proposed SCL
achieves the best performance, indicating that simultaneously
optimizing the LCM , LMI , and LCD in our model performs
better than optimizing only one of them. To sum up, the
contribution of each component enables our SCL to learn
discriminative and modality-invariant representations as well
as preserve the intrinsic structure of multimedia data.

TABLE V: Ablation study on the contributions of CM, CD,
MI loss and WS strategy on the MS-COCO dataset.

Method Loss and Strategy Metrics
CM CD MI WS Img2Txt Txt2Img Avg.

SCL-1 X X 0.355 0.387 0.371
SCL-2 X X X 0.654 0.650 0.652
SCL-3 X X X 0.634 0.632 0.633
SCL-4 X X X 0.645 0.647 0.646
SCL X X X X 0.668 0.668 0.668

E. Parametric Sensitivity Analysis

In this section, we carried out experiments to explore the
impact of the parameter τ , the batch size N and the trade-off
parameters α and β. To analyze how the parameters α and
β affect the retrieval performance, we fixed the temperature
parameter τ and the batch size N and tuned the parameters
α and β by searching the grid of [0.001, 0.01, 0.1, 1, 10,
100, 1000] on the validation set. The results of α and β on
Wikipedia and NUS-WIDE-10K are shown in Figure 5. We
can observe that the results are stable when α varies in the
range of [0.001, 0.01, 0.1, 1] and β varies in the range of [1,
10, 100, 1000]. In a similar way, we tested the importance
of the batch size N and temperature τ with different values
when fixing the parameters α and β. Figure 6 shows that our
SCL is not sensitive to N and τ with the regularization effect
of intrisic structure preservation.

F. Feature Visualization

In Figure 7, we visualized the learned representaions for
the testing data on Wikipedia by using t-SNE [54]. The
results of the image samples represented by 4,096-dimensional
(VGGNet) features and the text samples represented by
5,000-dimensional (BoW) features are displayed in Figure
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Fig. 6: Retrieval performance of SCL with different values of temperature τ and batch size N on the MS-COCO dataset.

(a) Original image features (b) Original text features (c) Representations of SDML with 10% labeled data in the
common space

(d) Representations of SCL without labeled data in the
common space

(e) Representations of SCL with
10% labeled data in the common
space

Fig. 7: t-SNE visulization for the testing data on the Wikipedia dataset. The circles denote the image features, and the x
symbols describe the text features. The features of the same semantic category are marked with the same color.

7 (a) and Figure 7 (b), respectively. Figure 7 (c) shows
the image and text representations of SDML trained with
10% labeled data in the common space. Figure 7 (d) and
Figure 7 (e) display the learned common representations of
our SCL without labeled data and with 10% labeled data,
respectively. From these figures, we can see that our SCL
with contrastive discrimination function is able to model
the relationship among intra- and inter-modality samples,
which effectively clusters similar samples with the same
semantic category into one group and separates the dissimilar
samples with different classes. In addition, compared with
the representations obtained by the supervised method SDML,
which is trained using 10% labeled data, we can find that there
exist clear boundaries between image and text representations
in Figure 7 (c) while the image and text modality are
completely mixed together in Figure 7 (d). It indicates that
our method can effectively eliminate the modality gap so

as to obtain the modality-agnostic representations. Moreover,
comparing Figure 7 (e) with Figure 7 (c), we can see that the
representation of SCL trained with 10% labeled data is more
discriminative and modality-invariant than the representations
of SDML with 10% labeled data, which shows the superiority
of our method.

G. Qualitative Results

We displayed several examples on the NUS-WIDE-10K test
split for image-to-text retrieval and text-to-image retrieval in
Figure 8. In the first two lines of Figure 8 (a) and (b), we can
see that our model can successfully retrieve relevant images
or texts. In Figure 8 (a), although false cases indicate the
different classes from the query, they have similar semantics.
In Figure 8 (b), our method can retrieve by single or multiple
tags. The retrieval results are highly relevant to the query.
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(a) Image-to-text retrieval examples

(b) Text-to-image retrieval examples

Fig. 8: Image-to-text and text-to-image retrieval results on NUS-WIDE-10K. The matched images are annotated in green boxes,
and the false ones are in red.

Although the false case belongs in a different category, it can
be searched according to its semantics.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new unsupervised cross-modal
retrieval method. It aims to retrieve relevant samples from
different modalities without label information. To achieve this
goal, we need to overcome the following three difficulties.
One is to narrow the media gap among different modalities,
the second is to introduce a supervisory signal to preserve
the cross-modal correlation structure of a mass of unlabeled
data, and the third is to learn discriminative representations
where similar samples are close while dissimilar samples
are separated. Therefore, on the one hand, we incorporate
the prior knowledge in the input as a supervisory signal
to guide the learning procedure by maximizing the mutual
information between the original modality-specific features
and the common representations. On the other hand, we
exploit the contrastive discrimination function to model the
correlation among intra- and inter-modality instances to learn
discriminative representations. Moreover, to further eliminate
the media gap, we use a weight-sharing scheme and minimize
the modality-invariant loss in the common space. The
extensive experiments conducted on three benchmark datasets
demonstrate that our proposed method can effectively address
these problems and achieve competitive results compared with
13 state-of-the-art approaches. In the future, we will explore
more self-supervised frameworks and applications in cross-

modal scenarios. Besides, we plan to incorporate the hashing
module into our model to achieve efficient retrieval.
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